• DocumentCode
    393818
  • Title

    Parameter estimation of various Hodgkin-Huxley-type neuronal models using a gradient-descent learning method

  • Author

    DOI, Shinji ; Onoda, Yuichi ; Kumagai, Sadatoshi

  • Author_Institution
    Osaka Univ., Japan
  • Volume
    3
  • fYear
    2002
  • fDate
    5-7 Aug. 2002
  • Firstpage
    1685
  • Abstract
    The automatic parameter identification method proposed by Doya et al. (1994) of the Hodgkin-Huxley-type equations (1952) is investigated in detail. The Hodgkin-Huxley-type equations describe membrane currents and conduction and excitation in nerves. An improved estimation method is proposed and it is shown that our method resolves the difficulties in estimating parameters of such equations with complicated membrane potential waveforms such as a chaotic bursting and also much improves the parameter estimation (learning) speed.
  • Keywords
    bioelectric phenomena; biomembranes; gradient methods; neurophysiology; parameter estimation; physiological models; Hodgkin-Huxley-type neuronal models; automatic parameter identification method; chaotic bursting; complicated membrane potential waveforms; gradient-descent learning method; learning speed; membrane current; nerve conduction; nerve excitation; parameter estimation; squid giant axon; Biological system modeling; Biomembranes; Cells (biology); Chaos; Differential equations; Learning systems; Mathematical model; Nerve fibers; Neurons; Parameter estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    SICE 2002. Proceedings of the 41st SICE Annual Conference
  • Print_ISBN
    0-7803-7631-5
  • Type

    conf

  • DOI
    10.1109/SICE.2002.1196569
  • Filename
    1196569