• DocumentCode
    394252
  • Title

    Online adaptation using speatransformation space model evolution

  • Author

    Kim, Dong Kook ; Kim, Young Joon ; Woo Hyung Lim ; Kim, Nam Soo

  • Author_Institution
    Sch. of Electr. Eng., Seoul Nat. Univ., South Korea
  • Volume
    1
  • fYear
    2003
  • fDate
    6-10 April 2003
  • Abstract
    This paper presents a new approach to online speaker adaptation based on transformation space model evolution. This approach extends the previous idea of speaker space model evolution by applying the a priori knowledge of training speakers to the speaker-dependent maximum likelihood linear regression (MLLR) matrix parameters. A quasi-Bayes (QB) estimation algorithm is devised to incrementally update the hyperparameters of the transformation space model and the regression matrices simultaneously. Experiments on supervised speaker adaptation demonstrate that the proposed approach is more effective compared with the conventional quasi-Bayes linear regression (QBLR) technique when a small amount of adaptation data is available.
  • Keywords
    Bayes methods; maximum likelihood estimation; speaker recognition; hyperparameters; matrix parameters; online speaker adaptation; quasi-Bayes estimation algorithm; regression matrices; speaker-dependent maximum likelihood linear regression; supervised speaker adaptation; transformation space model evolution; Covariance matrix; Data mining; Hidden Markov models; Linear regression; Loudspeakers; Maximum likelihood estimation; Maximum likelihood linear regression; Parameter estimation; Principal component analysis; Robustness;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-7663-3
  • Type

    conf

  • DOI
    10.1109/ICASSP.2003.1198778
  • Filename
    1198778