• DocumentCode
    39443
  • Title

    Detecting Motion through Dynamic Refraction

  • Author

    Alterman, M. ; Schechner, Y.Y. ; Perona, Pietro ; Shamir, J.

  • Author_Institution
    Dept. of Electr. Eng., Technion - Israel Inst. of Technol., Haifa, Israel
  • Volume
    35
  • Issue
    1
  • fYear
    2013
  • fDate
    Jan. 2013
  • Firstpage
    245
  • Lastpage
    251
  • Abstract
    Refraction causes random dynamic distortions in atmospheric turbulence and in views across a water interface. The latter scenario is experienced by submerged animals seeking to detect prey or avoid predators, which may be airborne or on land. Man encounters this when surveying a scene by a submarine or divers while wishing to avoid the use of an attention-drawing periscope. The problem of inverting random refracted dynamic distortions is difficult, particularly when some of the objects in the field of view (FOV) are moving. On the other hand, in many cases, just those moving objects are of interest, as they reveal animal, human, or machine activity. Furthermore, detecting and tracking these objects does not necessitate handling the difficult task of complete recovery of the scene. We show that moving objects can be detected very simply, with low false-positive rates, even when the distortions are very strong and dominate the object motion. Moreover, the moving object can be detected even if it has zero mean motion. While the object and distortion motions are random and unknown, they are mutually independent. This is expressed by a simple motion feature which enables discrimination of moving object points versus the background.
  • Keywords
    atmospheric turbulence; feature extraction; image motion analysis; object detection; object tracking; refraction; FOV; atmospheric turbulence; attention-drawing periscope; dynamic refraction; field of view; motion detection; motion feature; moving object point discrimination; object detection; object tracking; random dynamic distortions; water interface; Animals; Cameras; Covariance matrix; Dynamics; Nonlinear distortion; Optical distortion; Vectors; Motion detection; classification; distortion; random media; refraction; Algorithms; Artifacts; Artificial Intelligence; Image Interpretation, Computer-Assisted; Motion; Pattern Recognition, Automated; Refractometry;
  • fLanguage
    English
  • Journal_Title
    Pattern Analysis and Machine Intelligence, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0162-8828
  • Type

    jour

  • DOI
    10.1109/TPAMI.2012.192
  • Filename
    6296664