• DocumentCode
    395081
  • Title

    Bootstrapping kernel spectral density estimates with kernel bandwidth estimation

  • Author

    Zoubir, Abdelhak M.

  • Author_Institution
    Curtin Univ. of Technol., Perth, WA, Australia
  • Volume
    6
  • fYear
    2003
  • fDate
    6-10 April 2003
  • Abstract
    We address the problem of confidence interval estimation of spectral densities using the bootstrap. Of special interest is the choice of the kernel global bandwidth. First, we investigate resampling based techniques for the choice of the bandwidth. We then address the question of whether the accuracy of the distributional bootstrap estimation is influenced by using the resample version, rather than the sample version of an empirical bandwidth. Aligned with recent results on non-parametric probability density estimation, we found that varying an empirical bandwidth across resamples is largely unnecessary and thus, the computational burden is greatly reduced while maintaining estimation accuracy.
  • Keywords
    optimisation; parameter estimation; signal sampling; spectral analysis; bandwidth optimisation; computational burden; confidence interval estimation; distributional bootstrap estimation; estimation accuracy; kernel bandwidth estimation; kernel spectral density estimation; probability density estimation; resampling techniques; signal processing; Australia; Bandwidth; Data models; Frequency; Kernel; Limiting; Signal processing; Signal resolution;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-7663-3
  • Type

    conf

  • DOI
    10.1109/ICASSP.2003.1201684
  • Filename
    1201684