DocumentCode :
395081
Title :
Bootstrapping kernel spectral density estimates with kernel bandwidth estimation
Author :
Zoubir, Abdelhak M.
Author_Institution :
Curtin Univ. of Technol., Perth, WA, Australia
Volume :
6
fYear :
2003
fDate :
6-10 April 2003
Abstract :
We address the problem of confidence interval estimation of spectral densities using the bootstrap. Of special interest is the choice of the kernel global bandwidth. First, we investigate resampling based techniques for the choice of the bandwidth. We then address the question of whether the accuracy of the distributional bootstrap estimation is influenced by using the resample version, rather than the sample version of an empirical bandwidth. Aligned with recent results on non-parametric probability density estimation, we found that varying an empirical bandwidth across resamples is largely unnecessary and thus, the computational burden is greatly reduced while maintaining estimation accuracy.
Keywords :
optimisation; parameter estimation; signal sampling; spectral analysis; bandwidth optimisation; computational burden; confidence interval estimation; distributional bootstrap estimation; estimation accuracy; kernel bandwidth estimation; kernel spectral density estimation; probability density estimation; resampling techniques; signal processing; Australia; Bandwidth; Data models; Frequency; Kernel; Limiting; Signal processing; Signal resolution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-7663-3
Type :
conf
DOI :
10.1109/ICASSP.2003.1201684
Filename :
1201684
Link To Document :
بازگشت