DocumentCode :
395254
Title :
Recursive estimation of K-distribution parameters
Author :
Chung, Pei-Jung ; Roberts, William J.J.
Author_Institution :
Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA
Volume :
2
fYear :
2003
fDate :
6-10 April 2003
Abstract :
We address the problem of estimating parameters of K-distribution. A recursive procedure based on the recursive EM algorithm is derived to find the ML estimates. Recursive EM is a stochastic approximation procedure with a gain matrix derived from the augmented data. Under mild conditions estimates generated by such procedure are characterized by strong consistency and asymptotic normality. Because of the simple structure of the augmented data, the proposed algorithm has a simple implementation. Numerical results show that the proposed approach performs well for various parameter sets.
Keywords :
approximation theory; maximum likelihood estimation; radar imaging; recursive estimation; stochastic processes; synthetic aperture radar; K-distribution parameters; ML estimates; MLE; SAR applications; asymptotic normality; augmented data; gain matrix; maximum likelihood estimation; parameters estimation; recursive EM algorithm; recursive estimation; stochastic approximation; synthetic aperture radar; Clutter; Matrices; Maximum likelihood estimation; Parameter estimation; Random variables; Recursive estimation; Silver; Springs; Stochastic processes; Synthetic aperture radar;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-7663-3
Type :
conf
DOI :
10.1109/ICASSP.2003.1202391
Filename :
1202391
Link To Document :
بازگشت