DocumentCode :
396480
Title :
Saving the bandwidth in the fractional domain by generalized Hilbert transform pair relations
Author :
Pei, Soo-Chang ; Ding, Jian-Jiun
Author_Institution :
Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan
Volume :
4
fYear :
2003
fDate :
25-28 May 2003
Abstract :
In this paper, we develop some methods to save the bandwidth required in the fractional domain. The fractional domain is the transformed domain of the fractional Fourier transform (FRFT). It is the intermediate of the time domain and the frequency domain. We find that, with the aid of the fractional Hilbert transform and other techniques, we can save 1/2 or 3/4 of the bandwidth in the fractional domain if the signal is causal, real, a real signal multiplied by chirp, a fractal, or a finite duration signal. The efficiency of the FRFT can hence be improved.
Keywords :
Fourier transforms; Hilbert transforms; signal processing; bandwidth reduction; causal signal; chirp; finite duration signal; fractal signal; fractional Fourier transform; fractional domain bandwidth conservation; generalized Hilbert transform pair relations; real signal; Bandwidth; Chirp; Equations; Filters; Fourier transforms; Fractals; Frequency domain analysis; Signal processing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium on
Print_ISBN :
0-7803-7761-3
Type :
conf
DOI :
10.1109/ISCAS.2003.1205780
Filename :
1205780
Link To Document :
بازگشت