DocumentCode :
396856
Title :
Bayesian super-resolution of text image sequences from low resolution observations
Author :
Cortijo, Francisco J. ; Villena, Salvador ; Molina, Rafael ; Katsaggelos, Aggelos
Author_Institution :
Dpto. de Ciencias de la Computacion, Univ. de Granada, Spain
Volume :
1
fYear :
2003
fDate :
1-4 July 2003
Firstpage :
421
Abstract :
This paper deals with the problem of reconstructing high-resolution text images from an incomplete set of under-sampled, blurred, and noisy images shifted with subpixel displacement. We derive mathematical expressions for the calculation of the maximum a posteriori estimate of the high resolution image and the estimation of the parameters involved in the model. The method is tested on real text images and car plates, examining the impact of blurring and the number of available low resolution images on the final estimate.
Keywords :
image reconstruction; image resolution; image sampling; image sequences; maximum likelihood estimation; Bayesian super-resolution; image blurring; image reconstruction; image sampling; maximum a posteriori estimation; noisy image; parameter estimation; text image sequence; Bayesian methods; Charge coupled devices; Image reconstruction; Image resolution; Image sensors; Image sequences; Optical noise; Optical sensors; Signal resolution; Signal to noise ratio;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing and Its Applications, 2003. Proceedings. Seventh International Symposium on
Print_ISBN :
0-7803-7946-2
Type :
conf
DOI :
10.1109/ISSPA.2003.1224730
Filename :
1224730
Link To Document :
بازگشت