• DocumentCode
    397067
  • Title

    Genetically derived fuzzy c-means clustering algorithm for segmentation

  • Author

    Kachouie, Nezamoddin N. ; Alirezaie, Javad ; Raahemifar, Kaamran

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Ryerson Univ., Toronto, Ont., Canada
  • Volume
    2
  • fYear
    2003
  • fDate
    4-7 May 2003
  • Firstpage
    1119
  • Abstract
    The proper classification of pixels is an important step in the realm of satellite imagery, to partition different land cover regions. This paper describes a clustering method that utilizes hard and fuzzy clustering algorithms. The performance of the algorithm is optimized using genetic algorithm, which searches the best cluster centers to initialize the fuzzy partition matrix in place of random initialization. The proposed approach provides accurate clustering results for gray-level images. Comparison between segmentation results of hard c-means, fuzzy c-means and fuzzy c-means genetic algorithm (FGA) is presented.
  • Keywords
    fuzzy neural nets; genetic algorithms; pattern clustering; clustering algorithm; fuzzy c-means; fuzzy partition matrix; genetic algorithm; gray-level images; random initialization; satellite imagery; Clustering algorithms; Clustering methods; Equations; Fuzzy sets; Genetic algorithms; Image segmentation; Iterative algorithms; Java; Partitioning algorithms; Satellites;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian Conference on
  • ISSN
    0840-7789
  • Print_ISBN
    0-7803-7781-8
  • Type

    conf

  • DOI
    10.1109/CCECE.2003.1226093
  • Filename
    1226093