DocumentCode
397879
Title
Non-parametric expectation maximization: a learning automata approach
Author
Abd-Almageed, Wael ; Osery, Aly Ei ; Smith, Christopher E.
Author_Institution
Dept. of Electr. & Comput. Eng., New Mexico Univ., Albuquerque, NM, USA
Volume
3
fYear
2003
fDate
5-8 Oct. 2003
Firstpage
2996
Abstract
The famous expectation maximization technique suffers two major drawbacks. First, the number of components has to be specified apriori. Also, the expectation maximization is sensitive to initialization. In this paper, we present a new stochastic technique for estimating the mixture parameters. Parzen Window is used to estimate a discrete estimate of the PDF of the given data. Stochastic learning automata is then used to select the mixture parameters that minimize the distance between the discrete estimate of the PDF and the estimate of the expectation maximization. The validity of the proposed approach is verified using bivariate simulation data.
Keywords
learning automata; nonparametric statistics; optimisation; parameter estimation; probability; stochastic processes; PDF; Parzen Window; bivariate simulation data; expectation maximization technique; mixture parameters estimation; nonparametric expectation maximization; probability density function; stochastic learning automata; stochastic technique; Automatic speech recognition; Computational modeling; Computer vision; Density functional theory; Learning automata; Parameter estimation; Probability density function; Speech processing; Speech recognition; Stochastic processes;
fLanguage
English
Publisher
ieee
Conference_Titel
Systems, Man and Cybernetics, 2003. IEEE International Conference on
ISSN
1062-922X
Print_ISBN
0-7803-7952-7
Type
conf
DOI
10.1109/ICSMC.2003.1244347
Filename
1244347
Link To Document