DocumentCode
398457
Title
Bayesian parameter estimation in image reconstruction from subsampled blurred observations
Author
Vega, Miguel ; Mateos, Javier ; Molina, Rafael ; Katsaggelos, Aggelos K.
Author_Institution
Dpto. de Lenguajes y Sistemas Informaticos, Granada Univ., Spain
Volume
2
fYear
2003
fDate
14-17 Sept. 2003
Abstract
In this paper we consider the estimation of the unknown hyperparameters for the problem of reconstructing a high-resolution image from multiple undersampled, shifted, blurred and degraded frames with subpixel displacement errors. We derive mathematical expressions for the iterative calculation of the maximum likelihood estimate (mle) of the unknown hyperparameters given the low resolution observed images. Finally, the proposed method is tested on a synthetic image.
Keywords
Bayes methods; image reconstruction; maximum likelihood estimation; parameter estimation; Bayesian parameter estimation; high-resolution image reconstruction; iterative calculation; maximum likelihood estimate; subpixel displacement error; subsampled blurred observation; synthetic image; unknown hyperparameter estimation; Bayesian methods; Computer errors; Degradation; Image reconstruction; Image resolution; Image sensors; Parameter estimation; Signal processing; Signal resolution; Testing;
fLanguage
English
Publisher
ieee
Conference_Titel
Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on
ISSN
1522-4880
Print_ISBN
0-7803-7750-8
Type
conf
DOI
10.1109/ICIP.2003.1246845
Filename
1246845
Link To Document