DocumentCode :
398745
Title :
An optical flow probabilistic observation model for tracking
Author :
Lucena, M.J. ; Fuertes, J.M. ; De La Blanca, N. Perez ; Garrido, A.
Author_Institution :
Departamento de Informatica, Jaen Univ., Spain
Volume :
3
fYear :
2003
fDate :
14-17 Sept. 2003
Abstract :
In this paper, we define an observation model based on optical flow information to track objects using particle filter algorithms. Although the optical flow information enables us to know the displacement of objects present in a scene, it cannot be used directly to displace an object model since flow calculation techniques lack the necessary precision. In view of the fact that probabilistic tracking algorithms enable imprecise or incomplete information to be handled naturally, these models have been used as a natural means of incorporating flow information into the tracking.
Keywords :
image sequences; probability; tracking filters; contour normals; flow calculation techniques; object tracking; optical flow probabilistic observation model; optical flow vectors; particle filter algorithms; Current measurement; Equations; Image motion analysis; Information filtering; Information filters; Layout; Optical filters; Particle filters; Particle tracking; Probability distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on
ISSN :
1522-4880
Print_ISBN :
0-7803-7750-8
Type :
conf
DOI :
10.1109/ICIP.2003.1247405
Filename :
1247405
Link To Document :
بازگشت