• DocumentCode
    401716
  • Title

    An approach to attribute generalization in incomplete information systems

  • Author

    Li, Tian-rui ; Ma, Jun ; Xu, Yang ; Yang, Ning

  • Author_Institution
    Dept. of Math., Southwest Jiaotong Univ., China
  • Volume
    3
  • fYear
    2003
  • fDate
    2-5 Nov. 2003
  • Firstpage
    1698
  • Abstract
    Data mining is the efficient discovery of previously unknown patterns in large databases. How to use the existing knowledge to update knowledge is one of the important research areas in data mining. Since knowledge found by rough set is an apparent quantitative description and can be understood, of which data mining is in pursuit. Presently, several approaches based on classical rough set which aims at complete information system have been proposed for the mining task of updating knowledge. However, many information systems are incomplete in practical application. So it is important to develop approaches for updating knowledge in incomplete information systems in order to support more effective data mining. In this paper, based on an extension of the classical rough set theory for dealing with incomplete information systems, we have proposed a method for incremental updating approximations of a concept in incomplete information systems which may realize adding and deleting some attributes simultaneously at a time, that is very important to effectively handle dynamic attribute generalization and enhance the efficiency of data mining.
  • Keywords
    data mining; database management systems; rough set theory; attribute generalization; data mining; dynamic attribute generalization; incomplete information systems; incremental concept updating approximations; rough set theory; Data engineering; Data mining; Databases; Electronic mail; Information systems; Mathematics; Probability distribution; Set theory; Statistical distributions; Uncertainty;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Machine Learning and Cybernetics, 2003 International Conference on
  • Print_ISBN
    0-7803-8131-9
  • Type

    conf

  • DOI
    10.1109/ICMLC.2003.1259770
  • Filename
    1259770