• DocumentCode
    40212
  • Title

    Robust Consensus for a Class of Uncertain Multi-Agent Dynamical Systems

  • Author

    Han, Dongkun ; Chesi, Graziano ; Hung, Yeung Sam

  • Author_Institution
    Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China
  • Volume
    9
  • Issue
    1
  • fYear
    2013
  • fDate
    Feb. 2013
  • Firstpage
    306
  • Lastpage
    312
  • Abstract
    This paper investigates robust consensus for a class of uncertain multi-agent dynamical systems. Specifically, it is supposed that the system is described by a weighted adjacency matrix whose entries are polynomial functions of an uncertain vector constrained in a semi-algebraic set. For this uncertain topology, we provide necessary and sufficient conditions for ensuring robust first-order consensus and robust second-order consensus, in both cases of positive and non-positive weighted adjacency matrices. Moreover, we show how these conditions can be investigated through convex programming by using standard software. Some numerical examples illustrate the proposed results.
  • Keywords
    convex programming; matrix algebra; multi-agent systems; polynomials; uncertain systems; convex programming; polynomial functions; robust consensus; semialgebraic set; standard software; uncertain multiagent dynamical systems; weighted adjacency matrix; Eigenvalues and eigenfunctions; Laplace equations; Multiagent systems; Polynomials; Robustness; Symmetric matrices; Vectors; Convex programming; multi-agent system; robust consensus; uncertain system;
  • fLanguage
    English
  • Journal_Title
    Industrial Informatics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1551-3203
  • Type

    jour

  • DOI
    10.1109/TII.2012.2217971
  • Filename
    6297468