Title :
Robust Consensus for a Class of Uncertain Multi-Agent Dynamical Systems
Author :
Han, Dongkun ; Chesi, Graziano ; Hung, Yeung Sam
Author_Institution :
Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China
Abstract :
This paper investigates robust consensus for a class of uncertain multi-agent dynamical systems. Specifically, it is supposed that the system is described by a weighted adjacency matrix whose entries are polynomial functions of an uncertain vector constrained in a semi-algebraic set. For this uncertain topology, we provide necessary and sufficient conditions for ensuring robust first-order consensus and robust second-order consensus, in both cases of positive and non-positive weighted adjacency matrices. Moreover, we show how these conditions can be investigated through convex programming by using standard software. Some numerical examples illustrate the proposed results.
Keywords :
convex programming; matrix algebra; multi-agent systems; polynomials; uncertain systems; convex programming; polynomial functions; robust consensus; semialgebraic set; standard software; uncertain multiagent dynamical systems; weighted adjacency matrix; Eigenvalues and eigenfunctions; Laplace equations; Multiagent systems; Polynomials; Robustness; Symmetric matrices; Vectors; Convex programming; multi-agent system; robust consensus; uncertain system;
Journal_Title :
Industrial Informatics, IEEE Transactions on
DOI :
10.1109/TII.2012.2217971