• DocumentCode
    404013
  • Title

    Characterizing polynomials with roots in a semi-algebraic set

  • Author

    Lasserre, Jean B.

  • Author_Institution
    LAAS, CNRS, Toulouse, France
  • Volume
    4
  • fYear
    2003
  • fDate
    9-12 Dec. 2003
  • Firstpage
    3485
  • Abstract
    Let p ε R[x] be a real-valued polynomial and S ⊂ C a semi-algebraic set defined by polynomial inequalities gk(z, z~)≥0 for some polynomials gk in C[z, z~]. We provide a necessary and sufficient condition on the coefficients of p for all the zeros of p to be in S.
  • Keywords
    linear matrix inequalities; poles and zeros; polynomials; root loci; set theory; LMI; linear matrix inequalities; necessary condition; polynomial characteristics; polynomial inequalities; real valued polynomial; root loci; semialgebraic set; sufficient condition; zeros; Eigenvalues and eigenfunctions; Kalman filters; Polynomials; Sufficient conditions;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 2003. Proceedings. 42nd IEEE Conference on
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-7924-1
  • Type

    conf

  • DOI
    10.1109/CDC.2003.1271686
  • Filename
    1271686