• DocumentCode
    404389
  • Title

    Robust noncausal filtering

  • Author

    Einicke, Garry

  • Author_Institution
    Exploration & Min., CSIRO, Kenmore, Qld., Australia
  • Volume
    1
  • fYear
    2003
  • fDate
    9-12 Dec. 2003
  • Firstpage
    386
  • Abstract
    Filter asymptotes are developed for output estimation and input estimation problems which lead to bounds on the spectrum of the estimation error and a priori estimates for the scalar γ in the H design. State-space formulations for the optimal minimum-mean-square-error and suboptimal noncausal filters are presented. It is demonstrated that an H approach can improve on conventional maximum-likelihood and conditional-mean techniques in a speech filtering application.
  • Keywords
    H control; filtering theory; maximum likelihood estimation; mean square error methods; parameter estimation; state-space methods; H design; conditional mean techniques; conventional maximum likelihood; estimation error; input estimation; optimal minimum mean square error; output estimation; parameter estimation; robust noncausal filtering; speech filtering; state-space formulations; suboptimal noncausal filters; Australia; Estimation error; Filtering; Maximum likelihood estimation; Nonlinear filters; Riccati equations; Robustness; Speech; State estimation; Uncertainty;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 2003. Proceedings. 42nd IEEE Conference on
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-7924-1
  • Type

    conf

  • DOI
    10.1109/CDC.2003.1272592
  • Filename
    1272592