• DocumentCode
    404599
  • Title

    A sufficient condition for locally controlled invariance of a manifold for general non linear systems

  • Author

    Consolini, Luca ; Tosques, Mario

  • Author_Institution
    Dipartimento di Ingegneria dell Informazione, Parma Univ., Italy
  • Volume
    3
  • fYear
    2003
  • fDate
    12-12 Dec. 2003
  • Firstpage
    2053
  • Abstract
    This paper presents a sufficient condition for a manifold ¿ to be locally controlled invariant at x0 ¿ ¿ which reduces, in the cases of linear and non linear affine systems, to well known results in the literature: essentially the result says that a manifold ¿ ¿ ¿n is locally controlled at x0 ¿ ¿ if first of all we can find a control u0 ¿ ¿m such that F(x0, u0) ¿ Tx0¿ (this condition is evidently necessary), second F(x,u) continues to stay in something larger than Tx¿ (namely Tx¿ + ¿uF(x, u)(¿m)) in a neighborhood of (x0, u0) in ¿ × ¿m.
  • Keywords
    invariance; nonlinear control systems; affine systems; controlled invariance; nonlinear control systems; Control systems; Counting circuits; Jacobian matrices; Linear systems; Nonlinear control systems; State-space methods; Sufficient conditions; Topology;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 2003. Proceedings. 42nd IEEE Conference on
  • Conference_Location
    Maui, HI
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-7924-1
  • Type

    conf

  • DOI
    10.1109/CDC.2003.1272919
  • Filename
    1272919