• DocumentCode
    404632
  • Title

    A Newton algorithm for invariant subspace computation with large basins of attraction

  • Author

    Absil, P.-A. ; Sepulchre, R. ; Van Dooren, P. ; Mahony, R.

  • Author_Institution
    Dept. of Electr. Eng. & Comput. Sci., Liege Univ., Belgium
  • Volume
    3
  • fYear
    2003
  • fDate
    9-12 Dec. 2003
  • Firstpage
    2352
  • Abstract
    We study the global behaviour of a Newton algorithm on the Grassmann manifold for invariant subspace computation. It is shown that the basins of attraction of the invariant subspaces may collapse in case of small eigenvalue gaps. A Levenberg-Marquardt-like modification of the algorithm with low numerical cost is proposed. A simple strategy for choosing the parameter is shown to dramatically enlarge the basins of attraction of the invariant subspaces while preserving the fast local convergence.
  • Keywords
    Newton method; convergence; eigenvalues and eigenfunctions; matrix algebra; Grassmann manifold; Levenberg-Marquardt-like modification; Newton algorithm; eigenvalue gaps; invariant subspace computation; large attraction basins; Array signal processing; Australia; Convergence; Costs; Eigenvalues and eigenfunctions; Mathematics; Refining; Riccati equations; Symmetric matrices;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 2003. Proceedings. 42nd IEEE Conference on
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-7924-1
  • Type

    conf

  • DOI
    10.1109/CDC.2003.1272970
  • Filename
    1272970