Title :
A Newton algorithm for invariant subspace computation with large basins of attraction
Author :
Absil, P.-A. ; Sepulchre, R. ; Van Dooren, P. ; Mahony, R.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Liege Univ., Belgium
Abstract :
We study the global behaviour of a Newton algorithm on the Grassmann manifold for invariant subspace computation. It is shown that the basins of attraction of the invariant subspaces may collapse in case of small eigenvalue gaps. A Levenberg-Marquardt-like modification of the algorithm with low numerical cost is proposed. A simple strategy for choosing the parameter is shown to dramatically enlarge the basins of attraction of the invariant subspaces while preserving the fast local convergence.
Keywords :
Newton method; convergence; eigenvalues and eigenfunctions; matrix algebra; Grassmann manifold; Levenberg-Marquardt-like modification; Newton algorithm; eigenvalue gaps; invariant subspace computation; large attraction basins; Array signal processing; Australia; Convergence; Costs; Eigenvalues and eigenfunctions; Mathematics; Refining; Riccati equations; Symmetric matrices;
Conference_Titel :
Decision and Control, 2003. Proceedings. 42nd IEEE Conference on
Print_ISBN :
0-7803-7924-1
DOI :
10.1109/CDC.2003.1272970