DocumentCode :
404681
Title :
Optimal control for a bilinear model with recruiting agent in cancer chemotherapy
Author :
Ledzewicz, Urszula ; Schättler, Heinz
Author_Institution :
Dept. of Math. & Stat., Southern Illinois Univ., Edwardsville, IL, USA
Volume :
3
fYear :
2003
fDate :
9-12 Dec. 2003
Firstpage :
2762
Abstract :
We consider a general mathematical model for cancer chemotherapy as optimal control problem for a bilinear system and give necessary and sufficient conditions for strong local optimality of bang-bang controls. These results apply to a 3-compartment model, which besides a killing agent also includes a recruiting agent, i.e. a drug which acts on the residuum of dormant cells in the cell cycle. For this model it is shown that singular controls are not optimal, in fact singular regimes for the killing agent are locally maximizing with many extremal bang-bang trajectories near the non-optimal singular arc. Our results allow to distinguish between locally optimal and non-optimal bang-bang controls.
Keywords :
bang-bang control; bilinear systems; cancer; optimal control; radiation therapy; bang-bang controls; bilinear model; cancer chemotherapy; optimal control problem; recruiting agent; Bang-bang control; Cancer; Cells (biology); DNA; Drugs; Mathematical model; Nonlinear systems; Optimal control; Recruitment; Sufficient conditions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2003. Proceedings. 42nd IEEE Conference on
ISSN :
0191-2216
Print_ISBN :
0-7803-7924-1
Type :
conf
DOI :
10.1109/CDC.2003.1273042
Filename :
1273042
Link To Document :
بازگشت