• DocumentCode
    404851
  • Title

    Linear phase perfect reconstruction cosine modulated filter banks using nilpotent matrices

  • Author

    Abhilash, G. ; Anand, G.V.

  • Author_Institution
    Dept. of Electron. & Commun. Eng., Nat. Inst. of Technol., Calicut, India
  • Volume
    3
  • fYear
    2003
  • fDate
    15-17 Oct. 2003
  • Firstpage
    1020
  • Abstract
    We propose a new method of constructing linear phase perfect reconstruction (LPPR) cosine modulated filter banks (CMFB) in the Schuller-Smith framework which is a matrix framework for designing modulated filter banks [Gerald Schuller et al., Aug. 1996]. The design invokes nilpotent matrix formalism which originates from the Schuller-Smith framework. The design uses cosine modulation only and no sine modulation is necessary. The filter bank has an M-band structure in contrast to the conventional 2M-band structures [(X. Q. Gao et al., Apr. 1996) (Yuen-Pei Lin et al., Nov. 1995)] that use both cosine and sine modulations. The design uses discrete cosine transform type-6 (DCT-6).
  • Keywords
    channel bank filters; discrete cosine transforms; linear phase filters; matrix algebra; signal reconstruction; M-band structure; Schuller-Smith framework; constructing linear phase perfect reconstruction; conventional 2M-band structures; cosine modulated filter banks; discrete cosine transform; matrix framework; nilpotent matrix formalism; sine modulations; Channel bank filters; Discrete transforms; Filter bank; Finite impulse response filter; Nonlinear filters; Phase modulation; Polynomials; Prototypes; Sparse matrices; Taylor series;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    TENCON 2003. Conference on Convergent Technologies for the Asia-Pacific Region
  • Print_ISBN
    0-7803-8162-9
  • Type

    conf

  • DOI
    10.1109/TENCON.2003.1273401
  • Filename
    1273401