DocumentCode :
410383
Title :
Gaussian mixture classifier with regularized covariance estimator for hyperspectral data classification
Author :
Kuo, Bor-Chen ; Yang, Jinn-Min ; Landgrebe, David A.
Author_Institution :
Graduate Sch. of Educational Meas. & Stat., Nat. Taichung Teachers Coll., Taiwan
Volume :
1
fYear :
2003
fDate :
21-25 July 2003
Firstpage :
276
Abstract :
New Gaussian mixture classifiers are designed by replacing the maximum likelihood covariance estimator with regularized covariance estimator in both parameters estimation and model selection steps. The results of simulated and real data experiments suggested that nearest mean clustering and Bayesian information criterion with regularized covariance estimator is a better choice to build a Gaussian mixture classifier.
Keywords :
Gaussian processes; geophysical signal processing; geophysical techniques; maximum likelihood estimation; spectral analysis; BIC; Bayesian information criterion; Gaussian mixture classifier; hyperspectral data classification; maximum likelihood covariance estimator; model selection; nearest mean clustering; parameters estimation; real data experiments; regularized covariance estimator; simulated data; Bayesian methods; Computer science education; Electric variables measurement; Gaussian distribution; Hyperspectral imaging; Mathematics; Maximum likelihood estimation; National electric code; Parameter estimation; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International
Print_ISBN :
0-7803-7929-2
Type :
conf
DOI :
10.1109/IGARSS.2003.1293749
Filename :
1293749
Link To Document :
بازگشت