• DocumentCode
    411165
  • Title

    Mean shift-based clustering of remotely sensed data

  • Author

    Friedman, Lior ; Netanyahu, Nathan S. ; Shoshany, Maxim

  • Author_Institution
    Bar-Ilan Univ., Ramat-Gan, Israel
  • Volume
    6
  • fYear
    2003
  • fDate
    21-25 July 2003
  • Firstpage
    3432
  • Abstract
    In this paper, we investigate how to further exploit the various characteristics of mean shift, in an attempt to achieve a robust and efficient clustering module for remotely sensed data. A mean shift algorithm has shown o be promising in various image-processing applications, specifically in cluster analysis.
  • Keywords
    geophysical signal processing; geophysical techniques; image processing; pattern clustering; remote sensing; statistical analysis; cluster analysis; clustering module; image-processing applications; mean shift-based clustering; remotely sensed data; Clustering algorithms; Convergence; Gaussian distribution; Image converters; Image processing; Image segmentation; Iterative algorithms; Kernel; Remote sensing; Training data;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International
  • Print_ISBN
    0-7803-7929-2
  • Type

    conf

  • DOI
    10.1109/IGARSS.2003.1294812
  • Filename
    1294812