DocumentCode :
416
Title :
Simultaneous Information and Power Transfer for Broadband Wireless Systems
Author :
Huang, Kejie ; Larsson, Erik
Author_Institution :
Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Pok Fu Lam, China
Volume :
61
Issue :
23
fYear :
2013
fDate :
Dec.1, 2013
Firstpage :
5972
Lastpage :
5986
Abstract :
Far-field microwave power transfer (MPT) will free wireless sensors and other mobile devices from the constraints imposed by finite battery capacities. Integrating MPT with wireless communications to support simultaneous wireless information and power transfer (SWIPT) allows the same spectrum to be used for dual purposes without compromising the quality of service. A novel approach is presented in this paper for realizing SWIPT in a broadband system where orthogonal frequency division multiplexing and transmit beamforming are deployed to create a set of parallel sub-channels for SWIPT, which simplifies resource allocation. Based on a proposed reconfigurable mobile architecture, different system configurations are considered by combining single-user/multi-user systems, downlink/uplink information transfer, and variable/fixed coding rates. Optimizing the power control for these configurations results in a new class of multi-user power-control problems featuring the circuit-power constraints, specifying that the transferred power must be sufficiently large to support the operation of the receiver circuitry. Solving these problems gives a set of power-control algorithms that exploit channel diversity in frequency for simultaneously enhancing the throughput and the MPT efficiency. For the system configurations with variable coding rates, the algorithms are variants of water-filling that account for the circuit-power constraints. The optimal algorithms for those configurations with fixed coding rates are shown to sequentially allocate mobiles their required power for decoding in ascending order until the entire budgeted power is spent. The required power for a mobile is derived as simple functions of the minimum signal-to-noise ratio for correct decoding, the circuit power and sub-channel gains.
Keywords :
OFDM modulation; array signal processing; channel coding; microwave power transmission; mobile communication; multiuser channels; power control; telecommunication power management; variable rate codes; SWIPT; broadband wireless system; channel diversity; circuit power constraint; downlink information transfer; far field microwave power transfer; finite battery capacity; fixed coding rate; minimum signal to noise ratio; mobile device; multiuser power control problem; multiuser system; orthogonal frequency division multiplexing; power control algorithm; power control optimization; quality of service; receiver circuitry; reconfigurable mobile architecture; resource allocation; simultaneous wireless information and power transfer; single-user system; transmit beamforming; uplink information transfer; variable coding rate; water filling; wireless communication; wireless sensor; Base stations; Downlink; Mobile communication; OFDM; Power control; Receivers; Uplink; Cellular networks; energy harvesting; mobile communication; power control; power transmission;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2013.2281026
Filename :
6589954
Link To Document :
بازگشت