DocumentCode :
416566
Title :
A fast adaptive algorithm for Hopfield neural network
Author :
Zhao, X.C. ; Wang, X.G. ; Tang, Z. ; Tamura, H. ; Ishii, M. ; Zeng, G.Z.
Author_Institution :
Sch. of Comput. Sci. & Technol., Shandong Univ., China
Volume :
1
fYear :
2003
fDate :
4-6 Aug. 2003
Firstpage :
638
Abstract :
This paper presents a gradient-based algorithm to speed up the convergence of the Hopfield neural network. To achieve this, we introduce an individual step size n, which is adapted according to the gradient information. The algorithm is applied to some benchmark problems, extensive simulations are performed and its effectiveness is confirmed.
Keywords :
Hopfield neural nets; gradient methods; travelling salesman problems; Hopfield neural network; benchmark problems; combinatorial optimization; fast adaptive algorithm; gradient-based algorithm; traveling salesman problem;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
SICE 2003 Annual Conference
Conference_Location :
Fukui, Japan
Print_ISBN :
0-7803-8352-4
Type :
conf
Filename :
1323444
Link To Document :
بازگشت