DocumentCode :
417464
Title :
An exponentiated gradient adaptive algorithm for blind identification of sparse SIMO systems
Author :
Benesty, Jacob ; Huang, Yiteng ; Chen, Jingdong
Author_Institution :
Univ. du Quebec, Montreal, Que., Canada
Volume :
2
fYear :
2004
fDate :
17-21 May 2004
Abstract :
Sparse impulse responses are encountered in many acoustic and wireless channels. Recently, a class of exponentiated gradient (EG) algorithms has been proposed. One of the algorithms belonging to this class, the so-called EG± algorithm, converges and tracks much better than the classical stochastic gradient, or LMS, algorithm for sparse impulse responses. We apply this technique to blind identification of a sparse SIMO system and develop the multichannel EG± algorithm. A simple experiment demonstrates its advantage in convergence compared to the MCLMS algorithm.
Keywords :
adaptive systems; convergence of numerical methods; gradient methods; identification; transient response; acoustic channels; blind channel identification; blind identification; exponentiated gradient adaptive algorithm; multichannel LMS algorithm; multichannel exponentiated gradient algorithms; single-input multiple-output system; sparse SIMO systems; sparse impulse responses; stochastic gradient algorithm; wireless channels; Adaptive algorithm; Adaptive signal processing; Algorithm design and analysis; Convergence; Filters; Jacobian matrices; Least squares approximation; Signal processing algorithms; Stochastic processes; System identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-8484-9
Type :
conf
DOI :
10.1109/ICASSP.2004.1326386
Filename :
1326386
Link To Document :
بازگشت