DocumentCode :
419045
Title :
Using evolutionary algorithms to suggest variable transformations in linear model lack-of-fit situations
Author :
Castillo, Flor A. ; Sweeney, Jeff D. ; Zirk, Wayne E.
Author_Institution :
Dow Chem. Co., Freeport, TX, USA
Volume :
1
fYear :
2004
fDate :
19-23 June 2004
Firstpage :
556
Abstract :
When significant model lack of fit (LOF) is present in a second-order linear regression model, it is often difficult to propose the appropriate parameter transformation that will make model LOF insignificant. This paper presents the potential of genetic programming (GP) symbolic regression for reducing or eliminating significant second-order linear model LOF. A case study in an industrial setting at The Dow Chemical Company is presented to illustrate this methodology.
Keywords :
chemical industry; genetic algorithms; regression analysis; Dow Chemical Company; evolutionary algorithm; genetic programming; linear model lack-of-fit situations; parameter transformation; second-order linear model LOF; second-order linear regression model; significant model LOF; variable transformations; Chemical industry; Evolutionary computation; Fitting; Genetic programming; Industrial relations; Input variables; Linear regression; Polynomials; Testing; US Department of Energy;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2004. CEC2004. Congress on
Print_ISBN :
0-7803-8515-2
Type :
conf
DOI :
10.1109/CEC.2004.1330906
Filename :
1330906
Link To Document :
بازگشت