DocumentCode :
420633
Title :
Research on neural network predictive control based on particle swarm optimization
Author :
Xiao, Jianmei
Author_Institution :
Dept. of Electr. & Autom., Shanghai Maritime Univ., China
Volume :
1
fYear :
2004
fDate :
15-19 June 2004
Firstpage :
603
Abstract :
A new nonlinear predictive control algorithm is presented. The radial basis function neural network is used as multi-step predictive model. The particle swarm optimization algorithm is applied to perform the nonlinear optimization to enhance the convergence and accuracy. The simulation results show that the method is effective.
Keywords :
convergence; neurocontrollers; nonlinear control systems; nonlinear programming; predictive control; radial basis function networks; convergence; multistep predictive model; neural network predictive control; nonlinear optimization; nonlinear predictive control algorithm; particle swarm optimization algorithm; radial basis function neural network; Automation; Convergence; Electronic mail; Neural networks; Nonlinear control systems; Particle swarm optimization; Prediction algorithms; Predictive control; Predictive models; Radial basis function networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on
Print_ISBN :
0-7803-8273-0
Type :
conf
DOI :
10.1109/WCICA.2004.1340647
Filename :
1340647
Link To Document :
بازگشت