DocumentCode
4208
Title
A Network-Assisted Approach for RAT Selection in Heterogeneous Cellular Networks
Author
El Helou, Melhem ; Ibrahim, Marc ; Lahoud, Samer ; Khawam, Kinda ; Mezher, Dany ; Cousin, Bernard
Author_Institution
Ecole Super. d´Ing. de Beyrouth (ESIB), St. Joseph Univ. of Beirut, Beirut, Lebanon
Volume
33
Issue
6
fYear
2015
fDate
Jun-15
Firstpage
1055
Lastpage
1067
Abstract
When several radio access technologies (e.g., HSPA, LTE, WiFi, and WiMAX) cover the same region, deciding to which one mobiles connect is known as the Radio Access Technology (RAT) selection problem. To reduce network signaling and processing load, decisions are generally delegated to mobile users. Mobile users aim to selfishly maximize their utility. However, as they do not cooperate, their decisions may lead to performance inefficiency. In this paper, to overcome this limitation, we propose a network-assisted approach. The network provides information for the mobiles to make more accurate decisions. By appropriately tuning network information, user decisions are globally expected to meet operator objectives, avoiding undesirable network states. Deriving network information is formulated as a semi-Markov decision process (SMDP), and optimal policies are computed using the Policy Iteration algorithm. Also, and since network parameters may not be easily obtained, a reinforcement learning approach is introduced to derive what to signal to mobiles. The performances of optimal, learning-based, and heuristic policies, such as blocking probability and average throughput, are analyzed. When tuning thresholds are pertinently set, our heuristic achieves performance very close to the optimal solution. Moreover, although it provides lower performance, our learning-based algorithm has the crucial advantage of requiring no prior parameterization.
Keywords
Markov processes; cellular radio; decision theory; learning (artificial intelligence); mobile computing; radio access networks; HSPA; LTE; RAT selection; SMDP; WiFi; WiMAX; average throughput; blocking probability; heterogeneous cellular networks; heuristic policies; mobile users; network-assisted approach; operator objectives; optimal policies; policy iteration algorithm; radio access technologies; reinforcement learning approach; semi-Markov decision process; user decisions; Decision making; Encoding; Mobile communication; Mobile computing; Modulation; Quality of service; Throughput; Radio access technology selection; heterogeneous cellular networks; reinforcement learning; semi-Markov decision process;
fLanguage
English
Journal_Title
Selected Areas in Communications, IEEE Journal on
Publisher
ieee
ISSN
0733-8716
Type
jour
DOI
10.1109/JSAC.2015.2416987
Filename
7070654
Link To Document