• DocumentCode
    423345
  • Title

    An algorithm for conceptual clustering of Chinese text

  • Author

    Cai, Zhi ; Geng, Wan-Tong ; Zhao, Xin ; Cai, Qing-Sheng

  • Author_Institution
    Dept. of Comput. Sci. & Technol., Univ. of Sci. & Technol. of China, China
  • Volume
    5
  • fYear
    2004
  • fDate
    26-29 Aug. 2004
  • Firstpage
    3035
  • Abstract
    In this paper, an algorithm for conceptual clustering of Chinese text is presented. Authors adopt ontology - Hownet, use VSM (vector space model) to represent document. Then, the authors cluster the document by a partitioned algorithm. The test results show this algorithm is more efficient than the traditional text clustering method based on the keywords set.
  • Keywords
    ontologies (artificial intelligence); pattern clustering; text analysis; Chinese text clustering; Hownet; conceptual clustering; document clustering; ontology; vector space model; Clustering algorithms; Clustering methods; Computer aided instruction; Documentation; Ontologies; Partitioning algorithms; Space technology; Taxonomy; Text mining; Tree data structures;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on
  • Print_ISBN
    0-7803-8403-2
  • Type

    conf

  • DOI
    10.1109/ICMLC.2004.1378553
  • Filename
    1378553