DocumentCode
42356
Title
Trajectory Synthesis for Fisher Information Maximization
Author
Wilson, A.D. ; Schultz, J.A. ; Murphey, T.D.
Author_Institution
Dept. of Mech. Eng., Northwestern Univ., Evanston, IL, USA
Volume
30
Issue
6
fYear
2014
fDate
Dec. 2014
Firstpage
1358
Lastpage
1370
Abstract
Estimation of model parameters in a dynamic system can be significantly improved with the choice of experimental trajectory. For general nonlinear dynamic systems, finding globally “best” trajectories is typically not feasible; however, given an initial estimate of the model parameters and an initial trajectory, we present a continuous-time optimization method that produces a locally optimal trajectory for parameter estimation in the presence of measurement noise. The optimization algorithm is formulated to find system trajectories that improve a norm on the Fisher information matrix (FIM). A double-pendulum cart apparatus is used to numerically and experimentally validate this technique. In simulation, the optimized trajectory increases the minimum eigenvalue of the FIM by three orders of magnitude, compared with the initial trajectory. Experimental results show that this optimized trajectory translates to an order-of-magnitude improvement in the parameter estimate error in practice.
Keywords
estimation theory; measurement errors; measurement uncertainty; nonlinear dynamical systems; optimal control; optimisation; parameter estimation; continuous-time optimization method; double-pendulum cart apparatus; fisher information maximization; measurement noise; nonlinear dynamic systems; optimal trajectory synthesis; parameter estimation; Algorithm design and analysis; Maximum likelihood estimation; Nonlinear dynamical systems; Optimal control; Optimization; Parameter estimation; Trajectory; Maximum likelihood estimation; optimal control; parameter estimation;
fLanguage
English
Journal_Title
Robotics, IEEE Transactions on
Publisher
ieee
ISSN
1552-3098
Type
jour
DOI
10.1109/TRO.2014.2345918
Filename
6882246
Link To Document