DocumentCode :
423915
Title :
Radial basis function network-based adaptive tracking control for robot manipulators
Author :
Wang, Hong-rui ; Zhu, Qi-guang ; Chen, Ying
Author_Institution :
Inst. of Electron. & Commun. Eng., Hebei Univ., Baoding, China
Volume :
1
fYear :
2004
fDate :
26-29 Aug. 2004
Firstpage :
510
Abstract :
A radial basis function (RBF) network-based adaptive tracking control scheme is proposed for robot manipulators. A RBF network is used to generate control input signals that are similar to the control inputs of adaptive control using liner reparameterization of the robot manipulator. A sliding model control term is used to eliminate the effects of the network inherent approximation errors and external disturbance. The asymptotic stability of the control system is established using Lyapunov theorem. Simulations are given for a two-link robot in the end of the paper, and validate the control arithmetic.
Keywords :
Lyapunov methods; adaptive control; asymptotic stability; manipulators; neurocontrollers; radial basis function networks; tracking; variable structure systems; Lyapunov theorem; adaptive tracking control; asymptotic stability; liner reparameterization; radial basis function network; robot manipulator; sliding model control; two-link robot; Adaptive control; Adaptive systems; Approximation error; Asymptotic stability; Manipulators; Programmable control; Radial basis function networks; Robot control; Signal generators; Sliding mode control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on
Print_ISBN :
0-7803-8403-2
Type :
conf
DOI :
10.1109/ICMLC.2004.1380744
Filename :
1380744
Link To Document :
بازگشت