DocumentCode :
424062
Title :
A double integrated neural network for identification of geometrical features dependency in lumped models
Author :
Luchetta, A. ; Manetti, S. ; Pellegrini, L.
Author_Institution :
Dept. of Electron. & Telecommun., Florence Univ., Italy
Volume :
4
fYear :
2004
fDate :
25-29 July 2004
Firstpage :
2895
Abstract :
A novel identification technique for lumped models of general electronic circuits (i.e. MOSFET, BJT, monolithic integrated circuits and filters) is presented. The approach is based on a neural network having a supplementary layer and an adapted learning process, whose convergence allows the validation of the device model. The supplementary layer is another neural network trained off-line on the model under exam. The inputs of the network are geometrical parameters and the neural network output represents the lumped circuit parameter estimation.
Keywords :
circuit CAD; learning (artificial intelligence); lumped parameter networks; neural net architecture; parameter estimation; adapted learning process; double integrated neural network; general electronic circuit; geometrical parameter; identification technique; lumped circuit parameter estimation; lumped model; Circuit simulation; Equivalent circuits; Frequency measurement; Heterojunction bipolar transistors; Intelligent networks; MOSFET circuits; Monolithic integrated circuits; Neural networks; Numerical simulation; Solid modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on
ISSN :
1098-7576
Print_ISBN :
0-7803-8359-1
Type :
conf
DOI :
10.1109/IJCNN.2004.1381120
Filename :
1381120
Link To Document :
بازگشت