DocumentCode :
424845
Title :
Confidence measure estimation in dynamical systems model input set selection
Author :
Deignan, Paul B., Jr. ; King, Galen B. ; Meckl, Peter H. ; Jennings, Kristofer
Author_Institution :
Sch. of Mechanical Eng., Purdue Univ., West Lafayette, IN, USA
Volume :
3
fYear :
2004
fDate :
June 30 2004-July 2 2004
Firstpage :
2824
Abstract :
An information-theoretic input selection method for dynamical system modeling is presented that qualifies the rejection of irrelevant inputs from a candidate input set with an estimate of a measure of confidence given only finite data. To this end, we introduce a method of determining the spatial interval of dependency in the context of the modeling problem for bootstrap mutual information estimates on dependent time-series. Additionally, details are presented for determining an optimal binning interval for histogram-based mutual information estimates.
Keywords :
estimation theory; nonlinear control systems; time series; time-varying systems; bootstrap mutual information estimates; confidence measure estimation; dependent time-series; diesel engine operation; dynamical system modeling; histogram-based mutual information estimates; information-theoretic input selection; model input set selection; optimal binning interval; spatial dependency interval;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2004. Proceedings of the 2004
Conference_Location :
Boston, MA, USA
ISSN :
0743-1619
Print_ISBN :
0-7803-8335-4
Type :
conf
Filename :
1383894
Link To Document :
بازگشت