DocumentCode :
42487
Title :
Toward Incentivizing Anti-Spoofing Deployment
Author :
Bingyang Liu ; Jun Bi ; Vasilakos, Athanasios V.
Author_Institution :
Dept. of Comput. Sci., Tsinghua Univ., Beijing, China
Volume :
9
Issue :
3
fYear :
2014
fDate :
Mar-14
Firstpage :
436
Lastpage :
450
Abstract :
IP spoofing-based flooding attacks are a serious and open security problem on the current Internet. The best current antispoofing practices have long been implemented in modern routers. However, they are not sufficiently applied due to the lack of deployment incentives, i.e., an autonomous system (AS) can hardly gain additional protection by deploying them. In this paper, we propose mutual egress filtering (MEF), a novel antispoofing method, which provides continuous deployment incentives. The MEF is implemented on the AS border routers using access control lists (ACLs). It drops an outbound packet whose source address does not belong to the local AS if the packet is related to a spoofing attack against other MEF-enabled ASes. By this means, only the deployers of the MEF can gain protection, whereas nondeployers cannot free ride. As more ASes deploy MEF, deployment incentives become higher. We present the system design of MEF, and propose an optimal prefix compression algorithm to compact the ACL into the routers´ limited hardware resource. With theoretical analysis and simulations with real Internet data, our evaluation results show that MEF is the only method that achieves monotonically increasing deployment incentives for all types of spoofing attacks, and the system design is lightweight and practical. The prefix compression algorithm advances the state-of-the-art by generalizing the functionalities and reducing the overhead in both time and space.
Keywords :
IP networks; Internet; authorisation; computer network security; telecommunication network routing; ACL; AS border routers; IP spoofing-based flooding attacks; Internet; MEF; access control lists; antispoofing deployment incentivization; deployment incentives; functionality generalization; mutual egress filtering; open security problem; optimal prefix compression resource; overhead reduction; Compression algorithms; Filtering; Hardware; IP networks; Internet; Routing protocols; System analysis and design; DoS defense; IP spoofing; deployment incentive; spoofing prevention;
fLanguage :
English
Journal_Title :
Information Forensics and Security, IEEE Transactions on
Publisher :
ieee
ISSN :
1556-6013
Type :
jour
DOI :
10.1109/TIFS.2013.2296437
Filename :
6697842
Link To Document :
بازگشت