DocumentCode
425484
Title
Optimal complexity reduction of piecewise affine models based on hyperplane arrangements
Author
Geyer, Tobias ; Torrisi, Fabio D. ; Morari, Manfred
Author_Institution
Autom. Control Lab., Swiss Fed. Inst. of Technol., Zurich, Switzerland
Volume
2
fYear
2004
fDate
June 30 2004-July 2 2004
Firstpage
1190
Abstract
This work presents an algorithm that, given a piecewise affine (PWA) model, derives an equivalent PWA model that is minimal in the number of regions. The algorithm is based on the cells of the hyperplane arrangement that are already given when the PWA model is the result of the mode enumeration algorithm. In particular, the algorithm executes a branch and bound search on the markings of the cells of the hyperplane arrangement assuring optimality. As we refrain from solving additional LPs, the algorithm is not only optimal but also computationally attractive. The applicability of the algorithm can be extended to derive minimal PWA representations of general PWA models by first computing the hyperplane arrangement. An example illustrates the algorithm and shows its computational effectiveness.
Keywords
computational complexity; linear programming; piecewise linear techniques; tree searching; LP method; branch and bound search; hyperplane arrangement computing; minimal piecewise affine model representation; mode enumeration algorithm; optimal complexity reduction;
fLanguage
English
Publisher
ieee
Conference_Titel
American Control Conference, 2004. Proceedings of the 2004
Conference_Location
Boston, MA, USA
ISSN
0743-1619
Print_ISBN
0-7803-8335-4
Type
conf
Filename
1386734
Link To Document