• DocumentCode
    425710
  • Title

    A Bayesian approach to modeling the conditional density of the inverse controller

  • Author

    Herzallah, Randa ; Lowe, David

  • Author_Institution
    Fac. of Eng. Technol., Al-Balqa Appl. Univ., Amman, Jordan
  • Volume
    1
  • fYear
    2004
  • fDate
    2-4 Sept. 2004
  • Firstpage
    788
  • Abstract
    The inverse controller is traditionally assumed to be a deterministic function. This work presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes´ theorem. Using Bayes´ rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems. For illustration purposes, the proposed methodology is applied to linear Gaussian systems.
  • Keywords
    Bayes methods; Gaussian distribution; inverse problems; linear systems; minimisation; modelling; nonlinear control systems; optimal control; parameter estimation; stochastic processes; Bayes rule theorem; Bayesian method; conditional density modeling; deterministic function; forward model; inverse controller; inverse model; linear Gaussian systems; minimisation; nonlinear systems; optimal control signal estimation; parameter estimation; stochastic model estimation; uncertainty knowledge; Bayesian methods; Instruments; Inverse problems; Modeling; Neural networks; Nonlinear systems; Optimal control; Parameter estimation; Stochastic processes; Uncertainty;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Applications, 2004. Proceedings of the 2004 IEEE International Conference on
  • Print_ISBN
    0-7803-8633-7
  • Type

    conf

  • DOI
    10.1109/CCA.2004.1387310
  • Filename
    1387310