DocumentCode :
425710
Title :
A Bayesian approach to modeling the conditional density of the inverse controller
Author :
Herzallah, Randa ; Lowe, David
Author_Institution :
Fac. of Eng. Technol., Al-Balqa Appl. Univ., Amman, Jordan
Volume :
1
fYear :
2004
fDate :
2-4 Sept. 2004
Firstpage :
788
Abstract :
The inverse controller is traditionally assumed to be a deterministic function. This work presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes´ theorem. Using Bayes´ rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems. For illustration purposes, the proposed methodology is applied to linear Gaussian systems.
Keywords :
Bayes methods; Gaussian distribution; inverse problems; linear systems; minimisation; modelling; nonlinear control systems; optimal control; parameter estimation; stochastic processes; Bayes rule theorem; Bayesian method; conditional density modeling; deterministic function; forward model; inverse controller; inverse model; linear Gaussian systems; minimisation; nonlinear systems; optimal control signal estimation; parameter estimation; stochastic model estimation; uncertainty knowledge; Bayesian methods; Instruments; Inverse problems; Modeling; Neural networks; Nonlinear systems; Optimal control; Parameter estimation; Stochastic processes; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Applications, 2004. Proceedings of the 2004 IEEE International Conference on
Print_ISBN :
0-7803-8633-7
Type :
conf
DOI :
10.1109/CCA.2004.1387310
Filename :
1387310
Link To Document :
بازگشت