Title :
Learning hierarchical models of activity
Author :
Osentoski, Sarah ; Manfred, Victoria ; Mahadevan, Sridhar
Author_Institution :
Dept. of Comput. Sci., Massachusetts Univ., Amherst, MA, USA
fDate :
28 Sept.-2 Oct. 2004
Abstract :
This paper investigates learning hierarchical statistical activity models in indoor environments. The abstract hidden Markov model (AHMM) is used to represent behaviors in stochastic environments. We train the model using both labeled and unlabeled data and estimate the parameters using expectation maximization (EM). Results are shown on three datasets: data collected in lab, entryway, and home environments. The results show that hierarchical models outperform flat models.
Keywords :
hidden Markov models; learning (artificial intelligence); optimisation; robots; abstract hidden Markov model; expectation maximization; flat model; learning hierarchical statistical activity model; Computer science; Floors; Hidden Markov models; Hospitals; Humans; Indoor environments; Orbital robotics; Parameter estimation; Robots; Stochastic processes;
Conference_Titel :
Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on
Print_ISBN :
0-7803-8463-6
DOI :
10.1109/IROS.2004.1389465