DocumentCode :
426074
Title :
Learning hierarchical models of activity
Author :
Osentoski, Sarah ; Manfred, Victoria ; Mahadevan, Sridhar
Author_Institution :
Dept. of Comput. Sci., Massachusetts Univ., Amherst, MA, USA
Volume :
1
fYear :
2004
fDate :
28 Sept.-2 Oct. 2004
Firstpage :
891
Abstract :
This paper investigates learning hierarchical statistical activity models in indoor environments. The abstract hidden Markov model (AHMM) is used to represent behaviors in stochastic environments. We train the model using both labeled and unlabeled data and estimate the parameters using expectation maximization (EM). Results are shown on three datasets: data collected in lab, entryway, and home environments. The results show that hierarchical models outperform flat models.
Keywords :
hidden Markov models; learning (artificial intelligence); optimisation; robots; abstract hidden Markov model; expectation maximization; flat model; learning hierarchical statistical activity model; Computer science; Floors; Hidden Markov models; Hospitals; Humans; Indoor environments; Orbital robotics; Parameter estimation; Robots; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on
Print_ISBN :
0-7803-8463-6
Type :
conf
DOI :
10.1109/IROS.2004.1389465
Filename :
1389465
Link To Document :
بازگشت