DocumentCode :
42972
Title :
Dramatic Reduction of FMR Linewidth in Epitaxial Pb(ZrTi)O _{3} -NiFe _{2} O
Author :
Feiming Bai ; Guo Yu ; Yicheng Wang ; Lichuan Jin ; Zhiyong Zhong ; Huaiwu Zhang ; Fei Ye
Author_Institution :
State Key Lab. of Electron. Thin Film & Integrated Devices, Univ. of Electron. Sci. & Technol., Chengdu, China
Volume :
49
Issue :
7
fYear :
2013
fDate :
Jul-13
Firstpage :
4299
Lastpage :
4302
Abstract :
Self-assembled nanocomposite Pb(Zr0.52Ti0.48)O3-NiFe2O4 films have been grown on the (001)-oriented MgAl2O4 substrate by a 90° off-axis magnetron sputtering method. X-ray diffraction shows that both Pb(ZrTi)O3 and NiFe2O4 phases are epitaxial with a 1-3 dimensional embedding composite structure. The vertical lattice mismatch between the Pb(ZrTi)O3 and NiFe2O4 phase is only 0.65%, indicating almost perfect matching of both phases and low defect concentration. Magnetization measurement shows that the coercive field is 274 Oe and linear extrapolation of the in-plane magnetization yields a uniaxial anisotropy field of ~1.3 kOe for a 1200 nm-thickness sample. The peak-to-peak ferromagnetic resonance (FMR) linewidth of the film is about 271 Oe, therefore, suitable for nonreciprocal RF/microwave devices.
Keywords :
X-ray diffraction; coercive force; ferromagnetic resonance; lead compounds; magnetic anisotropy; magnetic epitaxial layers; nanocomposites; nanofabrication; nanomagnetics; nickel compounds; self-assembly; spectral line breadth; sputter deposition; (001)-oriented substrate; 1-3 dimensional embedding composite structure; FMR linewidth reduction; Pb(ZrTi)O3-NiFe2O4; X-ray diffraction; coercive field; epitaxial layers; epitaxial nanocomposite films; in-plane magnetization yields; linear extrapolation; low defect concentration; magnetization measurement; nonreciprocal RF-microwave devices; off-axis magnetron sputtering method; peak-to-peak ferromagnetic resonance linewidth; self-assembled nanocomposite film growth; size 1200 nm; uniaxial anisotropy field; vertical lattice mismatch; Epitaxial growth; Magnetic resonance; Magnetoelectric effects; Microwave theory and techniques; Perpendicular magnetic anisotropy; Substrates; Ferrite; ferroelectric; magnetoelectric effect; nanocomposite film;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2013.2243411
Filename :
6559343
بازگشت