DocumentCode :
431254
Title :
Context-Dependent Duration Modeling
Author :
Willett, Daniel
Author_Institution :
Temic Speech Dialog Syst., Ulm, Germany
Volume :
1
fYear :
2005
fDate :
March 18-23, 2005
Firstpage :
421
Lastpage :
424
Keywords :
Viterbi decoding; hidden Markov models; speech recognition; 1-best Viterbi decoder; conditional duration probabilities; connected digit recognition; context-dependent duration model; duration-dependent density functions; first-order HMM-based speech recognizer; hidden Markov models; relative word error reduction; Context modeling; Decoding; Density functional theory; Distribution functions; Hidden Markov models; Probability distribution; Solid modeling; Speech recognition; Topology; Viterbi algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-8874-7
Type :
conf
DOI :
10.1109/ICASSP.2005.1415140
Filename :
1415140
Link To Document :
بازگشت