DocumentCode
431369
Title
Automatic Syllable Stress Detection Using Prosodic Features for Pronunciation Evaluation of Language Learners
Author
Tepperman, Joseph ; Narayanan, Shrikanth
Author_Institution
Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA, USA
Volume
1
fYear
2005
fDate
March 18-23, 2005
Firstpage
937
Lastpage
940
Keywords
computational linguistics; educational aids; feature extraction; natural languages; speech recognition; vocabulary; RMS energy range; automatic syllable stress detection; expected lexical stress pattern dictionary; feature extraction; fundamental frequency slope; language learner pronunciation evaluation; language learning system; machine tutor; pronunciation errors; prosodic features; student foreign language practice; system vocabulary; Computer vision; Design engineering; Dictionaries; Humans; Laboratories; Natural languages; Speech analysis; Stress; Viterbi algorithm; Vocabulary;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on
ISSN
1520-6149
Print_ISBN
0-7803-8874-7
Type
conf
DOI
10.1109/ICASSP.2005.1415269
Filename
1415269
Link To Document