DocumentCode :
431423
Title :
A Methodology for Evaluating Robustness of Face Recognition Algorithms with Respect to Variations in Pose Angle and Illumination Angle
Author :
Little, Greg ; Krishna, Sreekar ; Black, John ; Panchanathan, Sethuraman
Author_Institution :
Center for Cognitive Ubiquitous Comput., Arizona State Univ., Tempe, AZ, USA
Volume :
2
fYear :
2005
fDate :
March 18-23, 2005
Firstpage :
89
Lastpage :
92
Keywords :
Bayes methods; face recognition; hidden Markov models; image classification; principal component analysis; BIC; Bayesian intra-personal classifier; HMM; LDA; PCA; face recognition algorithm robustness; hidden Markov models; illumination angle variations; linear discriminant analysis; pose angle variations; principle component analysis; probabilistic learning methods; robustness measure; subspace analysis methods; Algorithm design and analysis; Face recognition; Hidden Markov models; Image databases; Image recognition; Learning systems; Lighting; Linear discriminant analysis; Robustness; Ubiquitous computing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-8874-7
Type :
conf
DOI :
10.1109/ICASSP.2005.1415348
Filename :
1415348
Link To Document :
بازگشت