DocumentCode :
431531
Title :
Recursive deconvolution of multisensor imagery using finite mixture distributions
Author :
Giannoula, A. ; Hatzinakos, D.
Author_Institution :
Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada
Volume :
2
fYear :
2005
fDate :
March 18-23, 2005
Firstpage :
637
Lastpage :
640
Keywords :
adaptive filters; deconvolution; image classification; image restoration; iterative methods; learning (artificial intelligence); optimisation; recursive estimation; sensor fusion; statistical distributions; EM algorithm; finite mixture distributions; finite mixture of normal densities; image classification; iterative deconvolution; learning; multisensor image fusion; multisensor imagery; optimized adaptive filtering; recursive deconvolution; Deconvolution; Degradation; Distributed computing; Employment; Finite impulse response filter; Image restoration; Iterative algorithms; Layout; Magnetic resonance imaging; Pixel;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-8874-7
Type :
conf
DOI :
10.1109/ICASSP.2005.1415485
Filename :
1415485
Link To Document :
بازگشت