DocumentCode :
431878
Title :
Parametric estimation of cumulants
Author :
Noam, Yair ; Tabrikian, Joseph
Author_Institution :
Dept. of ECE, Ben-Gurion Univ., Beer Sheva, Israel
Volume :
4
fYear :
2005
fDate :
18-23 March 2005
Abstract :
The problem of higher-order cumulants estimation is addressed in this paper. Higher-order cumulants are necessary in many applications, such as blind source separation (BSS) and blind deconvolution. In these applications, the cumulants are usually estimated using sample estimation. In this paper, a parametric method for cumulants estimation using the Gaussian mixture model (GMM) is derived. The cumulants are expressed in terms of the GMM parameters, and estimated using the maximum-likelihood estimator. The performance of the proposed model-based method was evaluated and compared to sample estimation using computer simulations. The results show that the model-based estimation outperforms the sample estimation in terms of root-mean-square error.
Keywords :
Gaussian distribution; blind source separation; deconvolution; higher order statistics; maximum likelihood estimation; BSS; GMM; Gaussian mixture model; blind deconvolution; blind source separation; higher-order cumulants estimation; maximum-likelihood estimator; model-based method; parametric estimation; performance; root-mean-square error; Application software; Blind source separation; Computer errors; Computer simulation; Deconvolution; Higher order statistics; Maximum likelihood estimation; Parameter estimation; Parametric statistics; Source separation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-8874-7
Type :
conf
DOI :
10.1109/ICASSP.2005.1416006
Filename :
1416006
Link To Document :
بازگشت