DocumentCode :
432483
Title :
A probabilistic framework for segmentation and tracking of multiple non rigid objects for video surveillance
Author :
Ivanovic, A. ; Huang, Thomas S.
Author_Institution :
Beckman Inst. for Adv. Sci. & Technol., Illinois Univ., Urbana, IL, USA
Volume :
1
fYear :
2004
fDate :
24-27 Oct. 2004
Firstpage :
353
Abstract :
This paper presents a probabilistic framework for segmenting and tracking multiple non rigid foreground objects for video surveillance, using a static monocular camera. The algorithm combines information in a probabilistic sense and poses the problem of matching the segmented foreground objects with blobs in the next frame as a non bipartite matching problem. To solve this problem, probability is calculated for each possible matching. Initialization of new objects is also treated in a probabilistic manner. The new framework is shown to be able to handle a greater set of difficult situations and to improve performance significantly.
Keywords :
image matching; image segmentation; probability; surveillance; video signal processing; event recognition; moving object segmentation; multiple foreground objects; multiple nonrigid object tracking; new object initialization; nonbipartite matching problem; object/blob matching; pixel segmentation; probabilistic information combining; probabilistic video segmentation method; segmented foreground objects; static monocular camera; video surveillance; Biological system modeling; Cameras; Histograms; Humans; Labeling; Markov random fields; Object detection; Object segmentation; Probability; Video surveillance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2004. ICIP '04. 2004 International Conference on
ISSN :
1522-4880
Print_ISBN :
0-7803-8554-3
Type :
conf
DOI :
10.1109/ICIP.2004.1418763
Filename :
1418763
Link To Document :
بازگشت