DocumentCode :
432764
Title :
Bayesian integration of a discrete choice pedestrian behavioral model and image correlation techniques for automatic multiobject tracking
Author :
Venegas, Santiago ; Antonini, Gianluca ; Thiran, Jean-Philippe ; Bierlaire, Michel
Author_Institution :
Signal Process. Inst., Swiss Fed. Inst. of Technol., Lausanne, Switzerland
Volume :
2
fYear :
2004
fDate :
24-27 Oct. 2004
Firstpage :
1037
Abstract :
In this paper we deal with the multiobject tracking problem in the particular case of pedestrians, assuming the detection step already done. We use a Bayesian framework to combine the likelihood term provided by an image correlation algorithm with a prior distribution given by a discrete choice model for pedestrian behavior, calibrated on real data. We aim to show how the combination of the image information with a model of pedestrian behavior can provides appreciable results in real and complex scenarios.
Keywords :
Bayes methods; image sequences; object detection; video signal processing; Bayesian framework; a priori distribution; automatic multiobject tracking problem; discrete choice model; image correlation algorithm; pedestrian behavior; Application software; Bayesian methods; Cameras; Equations; Image processing; Object detection; Signal processing; Signal processing algorithms; Target tracking; Video sequences;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2004. ICIP '04. 2004 International Conference on
ISSN :
1522-4880
Print_ISBN :
0-7803-8554-3
Type :
conf
DOI :
10.1109/ICIP.2004.1419479
Filename :
1419479
Link To Document :
بازگشت