DocumentCode :
432825
Title :
Robust Bayesian cameras motion estimation using random sampling
Author :
Qian, Gang ; Chellappa, Rama ; Zheng, Qinfen
Author_Institution :
Dept. of Electr. Eng. & Arts, Media & Eng. Program, Arizona State Univ., Tempe, AZ, USA
Volume :
2
fYear :
2004
fDate :
24-27 Oct. 2004
Firstpage :
1361
Abstract :
In this paper, we propose an algorithm for robust 3D motion estimation of wide baseline cameras from noisy feature correspondences. The posterior probability density function of the camera motion parameters is represented by weighted samples. The algorithm employs a hierarchy coarse-to-fine strategy. First, a coarse prior distribution of camera motion parameters is estimated using the random sample consensus scheme (RANSAC). Based on this estimate, a refined posterior distribution of camera motion parameters can then be obtained through importance sampling. Experimental results using both synthetic and real image sequences indicate the efficacy of the proposed algorithm.
Keywords :
cameras; image matching; image sampling; image sequences; importance sampling; motion estimation; probability; realistic images; stereo image processing; Bayesian cameras 3D motion estimation; RANSAC; feature matching; hierarchy coarse-to-fine strategy; importance sampling; posterior probability density function; random sample consensus scheme; real image sequences; synthetic image sequences; wide baseline cameras; Bayesian methods; Cameras; Computer vision; Humans; Monte Carlo methods; Motion estimation; Robustness; Sampling methods; Stereo vision; Tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2004. ICIP '04. 2004 International Conference on
ISSN :
1522-4880
Print_ISBN :
0-7803-8554-3
Type :
conf
DOI :
10.1109/ICIP.2004.1419754
Filename :
1419754
Link To Document :
بازگشت