DocumentCode :
432933
Title :
Automatically learning structural units in educational videos with the hierarchical hidden Markov models
Author :
Phung, Dinh Q. ; Venkatesh, Svetha ; Bui, Hung H.
Author_Institution :
Sch. of Comput., Curtin Univ. of Technol., Perth, WA, Australia
Volume :
3
fYear :
2004
fDate :
24-27 Oct. 2004
Firstpage :
1605
Abstract :
In this paper we present a coherent approach using the hierarchical HMM with shared structures to extract the structural units form the building blocks of an education/training video. Rather than using hand-crafted approaches to define the structural units, we use the data from nine training videos to learn the parameters of the HHMM, and thus naturally extract the hierarchy. We then study this hierarchy and examine the nature of the structure at different levels of abstraction. Since the observable is continuous, we also show how to extend the parameter learning in the HHMM to deal with continuous observations.
Keywords :
computer based training; hidden Markov models; automatically learning structural unit; educational video; hierarchical hidden Markov model; parameter learning; training video; Australia; Content management; Data mining; Electronic learning; Event detection; Hidden Markov models; Indexing; Layout; Motion pictures; Videos;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2004. ICIP '04. 2004 International Conference on
ISSN :
1522-4880
Print_ISBN :
0-7803-8554-3
Type :
conf
DOI :
10.1109/ICIP.2004.1421375
Filename :
1421375
Link To Document :
بازگشت