DocumentCode :
432975
Title :
Optimal sparse representations for blind source separation and blind deconvolution: a learning approach
Author :
Bronstein, Michael M. ; Bronstein, Alexunder M. ; Zibulevsky, Michael ; Zeevi, Yehoshua Y.
Author_Institution :
Dept. of Comput. Sci., Israel Inst. of Technol., Haifa, Israel
Volume :
3
fYear :
2004
fDate :
24-27 Oct. 2004
Firstpage :
1815
Abstract :
We present a generic approach, which allows to adapt sparse blind deconvolution and blind source separation algorithms to arbitrary sources. The key idea is to bring the problem to the case in which the underlying sources are sparse by applying a sparsifying transformation on the mixtures. We present simulation results and show that such transformation can be found by training. Properties of the optimal sparsifying transformation are highlighted by an example with aerial images.
Keywords :
blind source separation; deconvolution; image representation; aerial image; blind deconvolution; blind source separation; optimal sparse representation; sparse blind deconvolution; sparsifying transformation; Blind source separation; Computer science; Crosstalk; Deconvolution; Image processing; Image restoration; Large scale integration; Optimization methods; Source separation; Statistical distributions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2004. ICIP '04. 2004 International Conference on
ISSN :
1522-4880
Print_ISBN :
0-7803-8554-3
Type :
conf
DOI :
10.1109/ICIP.2004.1421428
Filename :
1421428
Link To Document :
بازگشت