DocumentCode :
434467
Title :
A scalable generative topographic mapping for sparse data sequences
Author :
Kabán, Ata
Author_Institution :
Sch. of Comput. Sci., Birmingham Univ., UK
Volume :
1
fYear :
2005
fDate :
4-6 April 2005
Firstpage :
51
Abstract :
We propose a novel, computationally efficient generative topographic model for inferring low dimensional representations of high dimensional data sets, designed to exploit data sparseness. The associated parameter estimation algorithm scales linearly with the number of nonzero entries in the observations while still learning a truly nonlinear generative mapping. The latent variables of the model lie in a 2D space that can be used for visualisation. We discuss related work and we provide experimental results on text based documents visualisation as well as the exploratory analysis of Web navigation sequences.
Keywords :
data models; data visualisation; document handling; parameter estimation; sequences; 2D space; Web navigation sequence; associated parameter estimation; exploratory analysis; generative topographic model; high dimensional data set; low dimensional representations; scalable generative topographic mapping; sparse data sequences; text based document visualisation; truly nonlinear generative mapping; Character generation; Computer science; Data mining; Data visualization; Electronic mail; Gold; Histograms; Navigation; Parameter estimation; Predictive models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Technology: Coding and Computing, 2005. ITCC 2005. International Conference on
Print_ISBN :
0-7695-2315-3
Type :
conf
DOI :
10.1109/ITCC.2005.34
Filename :
1428436
Link To Document :
بازگشت