DocumentCode :
435314
Title :
Identification of nonlinear continuous-time Hammerstein model using the Fourier modulating function technique
Author :
Seo, IwYong ; Lee, Myeong-Soo ; Jin-Hyuk Hong ; Lee, Yong-Kwan ; Suh, J.S.
Author_Institution :
Korea Electr. Power Res. Inst., Daejeon, South Korea
Volume :
2
fYear :
2004
fDate :
2-6 Nov. 2004
Firstpage :
1588
Abstract :
Adaptive weighted least square (AWLS) using Fourier modulating function (FMF) method was applied for the identification of nonlinear continuous-time Hammerstein model. A simulation example is studied. In the example optimal selection of I/O data interval and maximum frequency index of Fourier modulating function have been investigated based on a RMS normalized error criterion. The illustrative simulation studies for the AWLS using FMF show the efficiency of the approach for the parameter identification of a continuous-time Hammerstein system in the presence of significant output measurement disturbances.
Keywords :
Fourier analysis; continuous time systems; least squares approximations; nonlinear systems; parameter estimation; Adaptive weighted least square; Fourier modulating function technique; I/O data interval; RMS normalized error criterion; nonlinear continuous-time Hammerstein model; parameter identification; Electronic mail; Equations; Frequency estimation; Gaussian noise; Least squares methods; Nonlinear dynamical systems; Nonlinear systems; Parameter estimation; Polynomials; Transfer functions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE
Print_ISBN :
0-7803-8730-9
Type :
conf
DOI :
10.1109/IECON.2004.1431818
Filename :
1431818
Link To Document :
بازگشت