DocumentCode :
437501
Title :
Int-EM-CEM algorithm for imprecise data. Comparison with the CEM algorithm using Monte Carlo simulations
Author :
Hamdan, Hani ; Govaert, Girard
Author_Institution :
Univ. de Technol. de Compiegne, France
Volume :
1
fYear :
2004
fDate :
1-3 Dec. 2004
Firstpage :
410
Abstract :
This paper addresses the problem of fitting mixture model based-clustering to imprecise data using the CEM algorithm. Imprecise data are modelled by multivariate uncertainty zones, which constitute a generalization of multivariate interval-valued data. To estimate simultaneously the mixture model parameters and the partition from uncertainty zone data, we propose an adapted version of the CEM algorithm. Results on simulated data compare the proposed algorithm with the classical one (applied to the raw data then to the uncertain data).
Keywords :
Gaussian processes; Monte Carlo methods; data mining; generalisation (artificial intelligence); pattern classification; uncertainty handling; Gaussian processes; Int-EM-CEM algorithm; Monte Carlo simulation; data mining; multivariate uncertainty zone; pattern classification; Acoustic emission; Clustering algorithms; Displays; Heuristic algorithms; Iterative algorithms; Parameter estimation; Partitioning algorithms; Pressure control; Prototypes; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cybernetics and Intelligent Systems, 2004 IEEE Conference on
Print_ISBN :
0-7803-8643-4
Type :
conf
DOI :
10.1109/ICCIS.2004.1460450
Filename :
1460450
Link To Document :
بازگشت